CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / "New TRACK"

Jean-Paul Carneiro

February 17, 2010

ALIGN Parameter TRACKv39

- n ALIGN name δ_{xy} δ_z ϕ_z $\delta\phi_{dyn.}$ $\delta F_{dyn.}$ $\delta\phi_{static}$ δF_{static}
 - ► From RFQ exit to end of the CW 2 GeV linac (~400 meters)
 - ▶ 80 errors simulated with TRACKv39
 - ► Each error simulated with 100 runs with 3D SC (10 mA)
 - ▶ 80×100=8000 runs with TRACKv39 on FermiGrid

Parameters 01-20

- ightharpoonup 01/ Solenoids $\delta_{xy}=$ 150 $\mu{\rm m}$
- ightharpoonup 02/ Solenoids $\delta_{xy}=$ 300 $\mu{\rm m}$
- ▶ 03/ Solenoids $\delta_{xy} = 500 \ \mu \text{m}$
- ▶ 04/ Solenoids $\delta_{xy} = 750 \ \mu \text{m}$
- ightharpoonup 05/ Solenoids $\delta_{\mathrm{xy}}=$ 1000 $\mu\mathrm{m}$
- ▶ 06/ Solenoids $\delta_z = 150 \ \mu \text{m}$
- ▶ 07/ Solenoids $\delta_z = 300 \ \mu \text{m}$
- ▶ 08/ Solenoids $\delta_z = 500 \ \mu \text{m}$
- ▶ 09/ Solenoids $\delta_z = 750 \ \mu \text{m}$
- ▶ 10/ Solenoids $\delta_z = 1000 \ \mu \text{m}$

- ▶ 11/ Sol. Field $\delta F_{dynamic} = 0.5 \%$
- ▶ 12/ Sol. Field $\delta F_{dynamic} = 1.0 \%$
- ▶ 13/ Sol. Field $\delta F_{dynamic} = 1.5 \%$
- ▶ 14/ Sol. Field $\delta F_{dynamic} = 2.0 \%$
- ▶ 15/ Sol. Field $\delta F_{dynamic} = 2.5 \%$
- ▶ 16/ Sol. Field $\delta F_{static} = 0.5 \%$
- ▶ 17/ Sol. Field $\delta F_{static} = 1.0 \%$
- ▶ 18/ Sol. Field $\delta F_{static} = 1.5 \%$
- ▶ 19/ Sol. Field $\delta F_{static} = 2.0 \%$
- \triangleright 20/ Sol. Field $\delta F_{static} = 2.5 \%$

Parameters 21-40

- ightharpoonup 21/ Quads $\delta_{xy}=$ 150 $\mu {
 m m}$
- ightharpoonup 22/ Quads $\delta_{xy}=$ 300 μm
- ightharpoonup 23/ Quads $\delta_{xy}=500~\mu\mathrm{m}$
- ightharpoonup 24/ Quads $\delta_{xy}=750~\mu\mathrm{m}$
- ightharpoonup 25/ Quads $\delta_{xy}=1000~\mu\mathrm{m}$
- ightharpoonup 26/ Quads $\delta_z=150~\mu{\rm m}$
- ightharpoonup 27/ Quads $\delta_z=300~\mu\mathrm{m}$
- ightharpoonup 28/ Quads $\delta_z = 500 \ \mu m$
- ightharpoonup 29/ Quads $\delta_z = 750 \ \mu m$
- ightharpoonup 30/ Quads $\delta_z=1000~\mu{\rm m}$

- ▶ 31/ Quads $\phi_z = 1$ mrad
- ▶ 32/ Quads $\phi_z = 2$ mrad
- ▶ 33/ Quads $\phi_z = 5$ mrad
- ▶ 34/ Quads $\phi_z = 7$ mrad
- ightharpoonup 35/ Quads $\phi_z=$ 10 mrad
- ▶ 36/ Quads Field $\delta F_{dynamic} = 0.5 \%$
- ▶ 37/ Quads Field $\delta F_{dynamic} = 1.0 \%$
- ▶ 38/ Quads Field $\delta F_{dynamic} = 1.5 \%$
- ▶ 39/ Quads Field $\delta F_{dynamic} = 2.0 \%$
- ▶ 40/ Quads Field $\delta F_{dynamic} = 2.5 \%$

Parameters 41-60

- ▶ 41/ Quads Field $\delta F_{static} = 0.5 \%$
- ▶ 42/ Quads Field $\delta F_{static} = 1.0 \%$
- ▶ 43/ Quads Field $\delta F_{static} = 1.5 \%$
- ▶ 44/ Quads Field $\delta F_{static} = 2.0 \%$
- ▶ 45/ Quads Field $\delta F_{static} = 2.5 \%$
- ightharpoonup 46/ Cav. $\delta_{
 m xv}=$ 150 $\mu{
 m m}$
- ▶ 47/ Cav. $\delta_{xy} = 300 \ \mu \text{m}$
- ▶ 48/ Cav. $\delta_{xy} = 500 \ \mu \text{m}$
- ▶ 49/ Cav. $\delta_{xy} = 750 \ \mu \text{m}$
- \blacktriangleright 50/ Cav. $\delta_{xy}=1000~\mu\mathrm{m}$

- ▶ 51/ Cav. $\delta_z = 150~\mu \mathrm{m}$
- ▶ 52/ Cav. $\delta_z = 300~\mu\mathrm{m}$
- ▶ 53/ Cav. $\delta_z = 500 \ \mu \mathrm{m}$
- ▶ 54/ Cav. $\delta_z = 750 \ \mu \text{m}$
- ightharpoonup 55/ Cav. $\delta_z=1000~\mu\mathrm{m}$
- ▶ 56/ Cav. $\phi_z = 1$ mrad
- ▶ 57/ Cav. $\phi_z = 2$ mrad
- ▶ 58/ Cav. $\phi_z = 5$ mrad
- ▶ 59/ Cav. $\phi_z = 7$ mrad
- ▶ 60/ Cav. $\phi_z = 10$ mrad

Parameters 61-80

- ▶ 61/ Cav. Phase $\delta \phi_{dynamic} = 0.5^{\circ}$
- ▶ 62/ Cav. Phase $\delta \phi_{dynamic} = 1.0^{\circ}$
- ▶ 63/ Cav. Phase $\delta \phi_{dynamic} = 1.5^{\circ}$
- ▶ 64/ Cav. Phase $\delta \phi_{dynamic} = 2.0^{\circ}$
- ▶ 65/ Cav. Phase $\delta\phi_{dynamic}=2.5^\circ$
- ▶ 66/ Cav. Field $\delta F_{dynamic} = 0.5 \%$
- ▶ 67/ Cav. Field $\delta F_{dynamic} = 1.0 \%$
- ▶ 68/ Cav. Field $\delta F_{dynamic} = 1.5 \%$
- ▶ 69/ Cav. Field $\delta F_{dynamic} = 2.0 \%$
- ▶ 70/ Cav. Field $\delta F_{dynamic} = 2.5 \%$

- ▶ 71/ Cav. Phase $\delta\phi_{static} = 0.5^{\circ}$
- ▶ 72/ Cav. Phase $\delta \phi_{static} = 1.0^{\circ}$
- ▶ 73/ Cav. Phase $\delta\phi_{static}=1.5^\circ$
- ▶ 74/ Cav. Phase $\delta \phi_{static} = 2.0^{\circ}$
- ▶ 75/ Cav. Phase $\delta \phi_{static} = 2.5^{\circ}$
- ▶ 76/ Cav. Field $\delta F_{static} = 0.5 \%$
- ▶ 77/ Cav. Field $\delta F_{static} = 1.0 \%$
- ▶ 78/ Cav. Field $\delta F_{static} = 1.5 \%$
- ▶ 79/ Cav. Field $\delta F_{static} = 2.0 \%$
- ▶ 80/ Cav. Field $\delta F_{static} = 2.5 \%$

(181) Solenoids $\delta_{xy}=150~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(182) Solenoids $\delta_{\mathrm{xy}}=$ 300 $\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(183) Solenoids $\delta_{\mathit{xy}} = 500~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(184) Solenoids $\delta_{\mathrm{xy}}=$ 750 $\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(185) Solenoids $\delta_{\mathit{xy}} = 1000~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(186) Solenoids $\delta_z=150~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(187) Solenoids $\delta_z = 300 \ \mu \text{m}$

Figure: RMS Emittance X

Figure: RMS Emittance z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(188) Solenoids $\delta_z = 500 \ \mu \mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(189) Solenoids $\delta_z = 750 \ \mu \text{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(190) Solenoids $\delta_z=1000~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(191) Sol. Field $\delta F_{dynamic} = 0.5~\%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(192) Sol. Field $\delta F_{dynamic} = 1.0$ %

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(193) Sol. Field $\delta F_{dynamic} = 1.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(194) Sol. Field $\delta F_{dynamic} = 2.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(195) Sol. Field $\delta F_{\rm dynamic} = 2.5~\%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(196) Sol. Field $\delta F_{static} = 0.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(197) Sol. Field $\delta F_{static} = 1.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(198) Sol. Field $\delta F_{static} = 1.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(199) Sol. Field $\delta F_{static} = 2.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(200) Sol. Field $\delta F_{static} = 2.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(201) Quads $\delta_{xy}=150~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(202) Quads $\delta_{\mathrm{xy}}=$ 300 $\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(203) Quads $\delta_{\mathit{xy}} = 500~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(204) Quads $\delta_{\mathit{xy}} =$ 750 μ m

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(205) Quads $\delta_{xy}=$ 1000 μ m

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(206) Quads $\delta_z=150~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(207) Quads $\delta_z = 300 \ \mu \text{m}$

Figure: RMS Emittance X

Figure: RMS Emittance z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(208) Quads $\delta_z = 500 \ \mu \text{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(209) Quads $\delta_z=750~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(210) Quads $\delta_z=1000~\mu\mathrm{m}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(211) Quads $\phi_z = 1$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(212) Quads $\phi_z = 2$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(213) Quads $\phi_z = 5$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(214) Quads $\phi_z = 7$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(215) Quads $\phi_z = 10 \text{ mrad}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(216) Quads Field $\delta F_{dynamic} = 0.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(217) Quads Field $\delta F_{dynamic} = 1.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(218) Quads Field $\delta F_{dynamic} = 1.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(219) Quads Field $\delta F_{dynamic} = 2.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(220) Quads Field $\delta F_{dynamic} = 2.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(221) Quads Field $\delta F_{static} = 0.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(222) Quads Field $\delta F_{static} = 1.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(223) Quads Field $\delta F_{static} = 1.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(224) Quads Field $\delta F_{static} = 2.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(225) Quads Field $\delta F_{static} = 2.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(226) Cav.
$$\delta_{xy}=150~\mu\mathrm{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(227) Cav.
$$\delta_{xy} = 300 \ \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(228) Cav.
$$\delta_{xy}=500~\mu\mathrm{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(229) Cav.
$$\delta_{xy}=750~\mu\mathrm{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(230) Cav.
$$\delta_{xy} = 1000 \ \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(231) Cav.
$$\delta_z = 150 \; \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(232) Cav.
$$\delta_z = 300 \ \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(233) Cav.
$$\delta_z = 500 \ \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(234) Cav.
$$\delta_z = 750 \ \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(235) Cav.
$$\delta_z = 1000 \ \mu \text{m}$$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(236) Cavities $\phi_z = 1$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(237) Cavities $\phi_z = 2 \text{ mrad}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(238) Cavities $\phi_z = 5$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(239) Cavities $\phi_z = 7$ mrad

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(240) Cavities $\phi_z = 10 \text{ mrad}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(241) Cav. Phase $\delta\phi_{\it dynamic}=0.5^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(242) Cav. Phase $\delta\phi_{\it dynamic}=1.0^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(243)Cav. Phase $\delta\phi_{\textit{dynamic}}=1.5^{\circ}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(244) Cav. Phase $\delta\phi_{\it dynamic}=2.0^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(245) Cav. Phase $\delta\phi_{\it dynamic}=2.5^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(246) Cav. Field $\delta F_{dynamic} = 0.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(247) Cav. Field $\delta F_{dynamic} = 1.0 \ \%$

Figure: RMS Emittance X

Figure: RMS Emittance z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(248) Cav. Field $\delta F_{dynamic} = 1.5~\%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(249) Cav. Field $\delta F_{dynamic} = 2.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(250) Cav. Field $\delta F_{dynamic} = 2.5~\%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(251) Cav. Phase $\delta\phi_{static}=0.5^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(252) Cav. Phase $\delta\phi_{static}=1.0^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(253) Cav. Phase $\delta\phi_{\it static}=1.5^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(254) Cav. Phase $\delta\phi_{static}=2.0^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(255) Cav. Phase $\delta\phi_{static}=2.5^\circ$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(256) Cav. Field $\delta F_{static} = 0.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(257) Cav. Field $\delta F_{static} = 1.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(258) Cav. Field $\delta F_{static} = 1.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(259) Cav. Field $\delta F_{static} = 2.0 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

(260) Cav. Field $\delta F_{static} = 2.5 \%$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: Losses [W⋅m⁻¹]

